
COMMUNICATIONS OF THE ACM August 2005/Vol. 48, No. 8 21

M
ost of the comments we
received on our recent
“Wireless Infidelity”

columns (Sept. and Dec. 2004)
related to the technical details of
breaking 802.11 encryption proto-
cols. While many readers may
know that WiFi is vulnerable to
hacking, far fewer know why. This
column will hopefully fill that gap.
To forestall possible initially reac-
tive feedback, we emphasize there
is nothing we’re going to explain
that isn’t already understood and
put into practice by the hacker and
criminal communities. The
people in the dark

tend to be the law-abiding citizens.
Perhaps this column will help level
the playing field so that defenders
have a better chance of protecting
their digital assets against WiFi
intrusion.

FMS ATTACK VECTORS

The genesis of the wireless inse-
curity problem was the 802.11
standard. The vulnerabilities
were built into the protocols.
Nowhere is this more evident
than in the bungled imple-
mentation of the RC4 sym-
metric, stream cipher
algorithm in the implementa-
tion of Wired Equivalent Pri-
vacy (WEP). The WEP
implementation of RC4 is
flawed in several ways: the Ini-
tialization Vector (IV) that is
always pre-pended to the key
prior to generation of the
keystream by the RC4 algo-
rithm is transmitted in cleart-
ext; the IV is relatively small
(three bytes), which produces a
lot of repetitions as the scant
16.77 million variations are
reused to encrypt millions of
packets; and some of the IVs
are “weak” in the sense they
may be used to betray infor-
mation about the key. It
should be noted that even if
the implementation of RC4
was corrected, WEP would still
be vulnerable to replay attacks,
checksum forging, message
integrity check forging, and
sundry authentication attacks
resulting from the fact that both

D
A

VI
D

 G
O

LD
IN

Digital Village Hal Berghel and Jacob Uecker

WiFi Attack Vectors
The security risks of WiFi connectivity have been established—the reasons for
these risks of intrusion are not as well understood.

22 August 2005/Vol. 48, No. 8 COMMUNICATIONS OF THE ACM

the plaintext challenge and
cipher text response are broad-
cast.

Here’s an example of IV weak-
ness. Since the first data to be
encrypted in a WEP packet is
usually the SNAP header (as with
IP and ARP packets), the first
byte of this header is almost
always 0xAA. A weak IV has a
format of B+3::ff::X (where B is
the byte of the key to be found, ff
is the constant 255, and X is irrel-
evant). Since the IV is transmitted
with the packet in plaintext, weak

IVs are easy to detect. The key
value of B is determined after the
B+3rd iteration of the key sched-
uling algorithm. Given a sufficient
amount of traffic, and repeated
applications of this strategy, we
can recover the entire key. Since
the IV is a 3-byte string, there are
2**24 possible values; it has been
estimated that about 2% of these
are weak. Empirical studies show
it only takes a few hundred pack-
ets encrypted with weak IVs to
crack the encryption. The ques-
tion isn’t whether WEP can be
broken, but how long it takes. As
a rule of thumb, a few million
packets generate enough weak IV
traffic to recover 40-bit WEP
keys.

We should mention that the
IEEE standard for IV selection
was ambiguous, so many wireless
vendors use sequential IV genera-
tors that begin with 00:00:00 and
wrap with FF:FF:FF. This is the
worst of both worlds. Not only is
this procedure guaranteed to gen-
erate weak IVs, but it does so pre-
dictably. Randomized IV selection
is a better idea, but as we shall see
also fails to solve the problem.
Utilities that break WEP encryp-
tion by taking advantage of weak
IVs are called “FMS utilities” after
the famous article by Fluhrer,
Mantin, and Shamir (see “URL
Pearls” at the end of this column
for more information) that
described several classes of weak

Digital Village

Figure 1. Aircrack Success. 13-byte
(104-bit) WEP key found in
18 seconds with 1,239,610 unique
IVs—far more than usually required.

IVs (aka “interesting packets”),
one of which is the “B+3:FF:X”
packet described earlier. Airsnort
(airsnort.shmoo.com) is an exam-
ple of a weak IV encryption
cracking utility that targets
B+3:FF:X-type packets. Since
modern WiFi cards and appli-
ances reduce the percentage of
weak IVs that are generated
(under the rubric of “WEP+” or
“Advanced WEP Encryption”),
Airsnort is declining in impor-
tance as it takes an unreasonably
long time to collect enough pack-
ets to break keys.

However, recall that there are
several classes of weak IVs. The
B+3:FF:X-type is just one. Newer
utilities like Aircrack (see
www.cr0.net:8040/code/network/)
and WepLab (see weplab.source-
forge.net/) use a more sophisti-
cated approach to span a broader
spectrum of FMS weak IV classes.
Aircrack does not crack live traffic
on-the-fly as Airsnort does, but
looks for a larger range (five mil-
lion) of weak IVs. Further, Air-
crack is capable of distributing the
workload over multiple processors
for efficiency. Figure 1 illustrates
the key recovery process using
Aircrack 2.1.

BEYOND FMS ATTACKS

Like Aircrack, WepLab also uses
a broader attack vector than
Airsnort. While it includes FMS
attacks, it also incorporates brute
force, dictionary, and an imple-
mentation of the “Korek algo-
rithm.” Some estimate that
WepLab can break 40-bit WEP
keys in 100,000 packets or less

and 104-bit WEP in 300,000
packets or less (see the source-
forge Web site).

Other WEP weaknesses that
may be exploited include defective
key-generation implementations.
Replay attacks result when wire-
less traffic is captured and re-
transmitted by foreign wireless
appliances thereby increasing the
volume of traffic. The traffic vol-
ume might be increased slightly to
lessen the time required to capture
sufficient packets to break the
WEP key quicker than normal
traffic would allow. On the other
end of the spectrum, the volume
of traffic could be maximized to
the point where a denial of service
results—much like a ping flood.
Aireplay (see www.cr0.net:8040/
code/network/aircrack/) is one
such tool for relay attacks. It har-
vests ARP-like packets from cap-
tured (“sniffed”) Pcap files, and
then rebroadcasts them indefi-
nitely to increase the traffic flow.

A variation on this theme is a
PRGA injection attack. In WEP,
the IV, the key, and the data
length value are all used by a
pseudo-random number generat-
ing algorithm (PRGA) to generate
a pseudo-random string exactly
the same length as the plaintext
data to be encrypted. The cipher-
text is the result of XORing this
string with the plaintext. If one
knew this string, deciphering the
text would be trivial because the
IV and ciphertext appear in cap-
tured packets. Attack vectors that
exploit this vulnerability are called
PRGA injection attacks. Here’s
one such strategy.

Suppose I want to connect to
an enterprise network through a
wireless access point. The empha-
sis is on the connection itself, and
not decryption of packets. What I
need is some way of conveying a
legitimate packet onto the net-
work. My bottleneck is that I
don’t have any way of authenticat-
ing myself as an authorized user.
But if I could just craft a SYN
packet with a spoofed IP address
to a machine under my control
and get the enterprise network to
accept it, I could establish a con-
nection. I can use the WAP to
help because of its anemic authen-
tication standards.

The PRGA injection works like
this. The hacker sniffs WEP chal-
lenge/response authentications
between the WAP and clients.
The challenge is in plaintext. The
response is an encrypted version
of the challenge. If we XOR the
challenge with the response, the
result is the PRGA. Armed with
the PRGA and four bytes of con-
trol information, one may craft
packets at will. Add to that a
spoofed, known acceptable IP
address for protection, and one
can move through the wireless
fabric like Code Red through a
straw. The only caveat is that the
crafted packets must reuse the
same IV. So long as IV reuse is
accepted by the wireless appli-
ances, this is not a liability. Enter
WEPWedgie (see sourceforge.net/
projects/wepwedgie/).

WEPWedgie is an automated
tool for PRGA injection. It con-
sists of two modules: prgasnarf,
which collects WEP

COMMUNICATIONS OF THE ACM August 2005/Vol. 48, No. 8 23

24 August 2005/Vol. 48, No. 8 COMMUNICATIONS OF THE ACM

challenge/response authentica-
tion; and wepwedgie, which crafts
the packets (for example, the SYN
packet described two paragraphs
earlier). The actual injection is
accomplished by a sister product
called Airjack (see sourceforge.
net/projects/airjack). Were one so
inclined, WEPWedgie can also be

modified to generate a plethora of
such crafted packets to create a
broadcast flood.

One remaining attack vector of
note is the dictionary attack. In
WEP, a passphrase is used to gen-
erate the four WEP keys. The
packet key is the result of append-
ing one of the four WEP keys to
the IV. In plain terms, if one
knows the passphrase and the
algorithm used to generate the
WEP keys, and the IV that is
broadcast in every encrypted
packet in plaintext, one can re-
create the packet keys. Many pop-
ular WEP WiFi products use the
Neesus Datacom key-generation
algorithm for the creation of the
WEP keys from the passphrase. A
dictionary attack results from run-
ning the Neesus algorithm against
a list of common passphrases. The
result is a file of WEP keys that
may then be compared against
the transmitted data for a match.
The details of how to optimize

the match is beyond the scope of
this column, but suffice it to say
that the utility WEPAttack
(wepattack.sourceforge.net) is
designed for just this purpose.

BUT THERE’S WPA, YOU SAY

Given the swiftness with which
the hacker community compro-

mised WEP, the Wi-Fi Alliance
made damage control a top pri-
ority. In doing so, they faced two
fundamental issues: they needed
to develop a fix immediately if
not sooner; and they had to stay
within the vendor’s capabilities to
implement it as quickly as possi-
ble even on legacy hardware. So,
by mid-2003, the Wi-Fi Pro-
tected Access (WPA) standard
was implemented and marketed
by the more aggressive vendors.

WPA sought to overcome the
critical deficiencies of WEP with
several changes. We list six here
along with the attack vectors
mentioned previously that they
mitigate against:

1. The minimum key length was
increased from 40 to 256 bits
(dictionary attacks);
2. The IV length was doubled
(FMS attacks);
3. IV sequencing was enforced
(replay attacks);

4. Key rotation was embedded
automatically (FMS, PRGA, and
dictionary attacks);
5. Mutual authentication was
built in so that both the WAP
and station had to prove to each
other that they were legitimate
(spoofing); and
6. Packet tampering detection

was built in with a Message
Integrity Code (PRGA Injection)

There were other changes as
well. Life was good for a few
months.

WPA is an improvement to be
sure. However, an early vulnera-
bility arose from the looseness in
the way the pre-shared keys (PSK)
were used. The WPA-PSK imple-
mentation was meant as a surro-
gate for authentication servers
(aka Radius servers), which are
uncommon in the SOHO mar-
ket. As with WEP, users simply
enter the same passphrase on
WAP and client, and the authen-
tication is transparent. Unfortu-
nately, passphrases less than
approximately 20 characters gave
rise to a new WiFi attack vector:
hash comparison attacks.

When WPA-PSK is imple-
mented, the passphrase that is
entered both on the client and
WAP side is run through a series
of computations to produce a set

Digital Village

The question isn’t whether WEP can be broken,
but how long it takes.

of keys. It is these keys that are
used to encrypt traffic and verify
its integrity. When users enter a
passphrase, they are directly con-
verted to hexadecimal (and by
extension, binary). The entropy of
the bytes is quite small. In other
words, the values are anything but
random. So to add some entropy
to the passphrase, it is hashed
along with some other session
variables like SSID and SSID
length. This hashing operation is
done 4,096 times to derive what
is called the pairwise master key or
PMK. This PMK is not yet the key
that is used in the encryption. The
PMK is actually used to generate
the pairwise transient key, (PTK). It
is the hacker’s job to find this PTK.
If that can be found, it can be
reverse engineered back to the PSK.
Once that is found, the hacker can
join the wireless network.

One of the newest WPA-PSK
cracking utilities is called coW-
PAtty (see new.remote-exploit.org/
index.php/Codes_main). It goes
through the process of finding the
PTK for every word or phrase in a
dictionary and checking to see if
that PTK generates the correct
Message Integrity Check (MIC)
value for a given packet. To do
this, it gathers the four-way hand-
shake that constitutes a WPA
authentication sequence. From
this series of packets, it first finds
the SSID of the network that is

COMMUNICATIONS OF THE ACM August 2005/Vol. 48, No. 8 25

Figure 2a. coWPAtty finds all the
data necessary to find the passphrase
in four packets.
Figure 2b. Using coWPAtty to find
the WPA pre-shared key.

a.

b.

needed in the hashing algorithm
to find the PMK. To find the
PTK, the “nonces” (random val-
ues) and MAC addresses that are
used in the four-way handshake
are needed. Once they are found
(see Figure 2a), they are used with
the PMK to find a PTK value.
Finally, this value can be used to
find the MIC of a packet. If the
calculated MIC matches the MIC
given in the packet, the correct
passphrase has been found. If not,
the process is repeated with the
next dictionary word/phrase.
Using coWPAtty, we were able to
break WPA in less than a minute

(see Figure 2b). Part of the reason
for this speed is only authentica-
tion frames are necessary. And if
the four handshaking packets
proved difficult to come by, other
WiFi tools exist that force de-
authentication, so the legitimate
user has to re-associate and re-
authenticate on demand! Now the
hackers have all the packets they
need.

The solution to this problem is
long, complex passphrases.
According the Moskowitz (see
wifinetnews.com/archives/
002452.html), after 20 charac-
ters the passphrase would begin

to be difficult to break. Some
authors recommend random
passphrases twice that length.
But how likely do you think it
is that the typical SOHO user
has shared secrets that look like
ikd8Jue*#^&hfda;lnvc74793-
KDie40I#$(*$d? Remember
that even if the length is satis-
factory, the strength of the
passphrase is undercut if it
consists of dictionary words—
and hackers seem to think of
everything when they build
their dictionaries. So don’t

even think about pA$$w0rd.
One final thought. Look for an
abundant supply of WPA crack-
ing utilities to appear in the next
12 months. The best protection
against them will include select-
ing AES instead of RC4 if that is
available on your WPA-compli-
ant appliance and to use very
long, complex passwords (WPA
supports passwords from 8 to 63
characters, so 63 should be your
target).

LEAP OF FAITH

We’ll get to the “L” in a
moment. First, EAP stands for

26 August 2005/Vol. 48, No. 8 COMMUNICATIONS OF THE ACM

Figure 3. Using asleap to find the
LEAP password.

Digital Village

WiFi will continue to be more vulnerable to attack than hardwired LANs
as long as electromagnetic radiation fails to obey property lines.

extensible authentication proto-
col. 802.1x provides a structure
for allowing layer 2 access to a
network. This is done using three
parties: the supplicant, authenti-
cator, and the authentication
server. The supplicant is the
device that wishes to have access
on the network. In the wireless
world, it’s usually a client com-
puter wishing to connect to the
wireless network. The authentica-
tor is the device that allows or
denies the actual access to the
network—the wireless access
point. Any access requests from
the supplicants are sent to the
authentication server through the
authenticator to see if they can
be allowed on the network. The
authentication server will deter-
mine whether the supplicant
should be allowed access to the
network and inform the authen-
ticator of the decision. Depend-
ing on the decision, access can
either be granted or denied. The
client can also authenticate the
authentication server, which
helps thwart man-in-the-middle
attacks. So under 802.1x, both
end points should in principle be
confident of the legitimacy of
each other.

What 802.1x doesn’t specify
(deliberately) is the mechanism as
to how the authentication server
will determine whether the suppli-
cant should be allowed on the
network. This is where EAP
comes in. EAP is provided to cre-
ate a channel through which the
supplicant and the authentication
server can exchange their creden-

COMMUNICATIONS OF THE ACM August 2005/Vol. 48, No. 8 27

URL Pearls

The theory behind FMS-type attacks is described in the classic article that
started the world of WEP cracking: “Weaknesses in the Key Scheduling Algo-
rithm of RC4” by Scott Fluhrer, Itsik Mantin, and Adi Shamir, which is abun-
dantly available via Web search. For a quick hop, see www.drizzle.com/
~aboba/IEEE/rc4_ksaproc.pdf.

Airsnort is available from The Schmoo Group (airsnort.shmoo.com/).
AirCrack (www.cr0.net:8040/code/network/) is the latest and greatest WEP
cracking package. Weplab (weplab.sourceforge.net/) combines brute force,
dictionary attacks, and statistical methods to find the WEP key. These prod-
ucts support the new KoreK methodology, which can be seen in program
chopper (www.netstumbler.org/showthread.php?t=11878&page=2; you
must register to get the download). A packet-by-packet decryption tech-
nique has also been created and implemented in the program chopchop
(www.netstumbler.org/showthread.php?t=12489; you must register to get
the download).

WEPwedgie (sourceforge.net/projects/wepwedgie/) allows traffic gener-
ation on an encrypted wireless network through either the Internet or a
wireless client.

WPA crackers will gain popularity and influence as WPA grabs more of
the market but for now, here are some tools: WPA Cracker
(www.tinypeap.com/html/wpa_cracker.html), and coWPAtty
(new.remote-exploit.org/index.php/Codes_main).

LEAP crackers: leap (packetstormsecurity.nl/0310-exploits/leap.tgz),
anwrap (www.securiteam.com/tools/6O00P2060I.html), THC-
LEAPcracker (www.thc.org/download.php?t=r&f=thc-leapcracker-
0.1.tar.gz), and asleap (asleap.sourceforge.net).

To create a dictionary for dictionary attacks, John the Ripper is state of the art
(www.openwall.com/john/).

For further reading on wireless insecurities, check out Wi-Foo
(www.wi-foo.com). A book that was just released as this column went to
press is Network Security Tools by Nitesh Dhanjani and Justin Clarke; the
later chapters provide some useful technical information on WiFi hacking.

For anyone seriously interested in this topic, the best resource is the
hands-on SANS course on Auditing Wireless Networks (www.sans.org)
written, and occasionally taught, by Joshua Wright. Attendees have the
opportunity to work with many of the tools and techniques mentioned here.

tials. These credentials are deter-
mined by the various EAP
types—one of which is the light-
weight version—hence the ‘L’. It’s
up to the EAP type to provide the
security between the two parties,
this is where the attacks happen.
Let’s take a look at the case of
LEAP.

Although LEAP is only avail-
able on Cisco or some Linksys (as
they are part of Cisco now) access
points (that would be the authen-
ticator part), it has become the
most popular EAP type. Cisco
developed the technology and
allowed wireless card vendors
access to the technology. As a
result, nearly all wireless client
cards support LEAP (that’s the
supplicant side). Unfortunately, it
is also fundamentally flawed due
to its usage of MS-CHAPv2. This
algorithm, and specifically the
way it is implemented in
EAP/LEAP, allows an attacker to
perform an offline attack to deter-
mine the password. When the
usage of EAP-LEAP has been
agreed upon, the authentication
server sends the supplicant (by
way of the authenticator) a nonce,
or challenge text. Specifically, it is
an 8-byte random stream the sup-
plicant must encrypt. To encrypt
the challenge text, the password is
hashed using an NT hash and
split up to generate three separate
keys. The first key consists of the
first seven bytes of the hashed
password, the second key is the
second seven bytes of the hashed
password, and the third key is the
final two bytes followed by five

NULL values. These three keys
are each used to encrypt the 8-
byte challenge text. The three 8-
byte results are then concatenated
into one 24-byte value. This value
is sent back to the authentication
server for verification. Since
EAP/LEAP supports mutual
authentication, the process is
repeated in the opposite direction
to authenticate the authentication
server with the supplicant.

The key to breaking
EAP/LEAP is the fact that NT
hashing does not use “salt.” That
means that the same plaintext
value will always hash to the same
hashed value. So an attacker can
hash a dictionary of plaintext pass-
words and store the corresponding
hash values. If the password is one
of the dictionary words, the
hashes will match. Since the third
hashed value that is used as a key
to encrypt the 8-byte challenge
consists of five null values, there is
really only 2**16 different values
that the key could be. With so few
possibilities, it is possible to find
the two bytes in less than a sec-
ond. At this point, the last two
NT hashed bytes of the password
have been recovered. Using the
precompiled dictionary, the
attacker finds all hashed passwords
in which the last two bytes match
what has been found. This usually
limits the possible passwords to a
number that can be brute forced
against the authentication server.
Now the attacker can achieve
access to the wireless network.

There are a number of utilities
that can perform this attack. The

most famous of which is asleap
(see asleap.sourceforge.net), devel-
oped by Joshua Wright. Figure 3
shows the output of asleap when
discovering the LEAP password of
a user. Notice the challenge/
response values, hash lookup
bytes, and corresponding dictio-
nary hashes are prominently dis-
played.

CONCLUSION

We leave where we began with
the hope that this treatment of
WiFi attack vectors will simulta-
neously encourage you to deploy
wireless technology sensibly, be
cognizant of the inherent risks,
and minimize your vulnerability
by taking advantage of the secu-
rity protections available. WiFi
will continue to be more vulner-
able to attack than hardwired
LANs as long as electromagnetic
radiation fails to obey property
lines.

Hal Berghel (www.berghel.net) is
associate dean of the Howard R. Hughes
College of Engineering at the University of
Nevada, Las Vegas and Erskine Fellow at the
University of Canterbury. He is also the
director of the Center for Cybermedia
Research and co-director of the National
Identity Theft and Financial Fraud Research
and Operations Center.
Jacob Uecker (jacob@juecker.net)is a
research assistant at the University of Nevada
at Las Vegas Center for Cybermedia Research
and the National Identity Theft and Financial
Fraud Research and Operations Center.

© 2005 ACM 0001-0782/05/0800 $5.00

c

28 August 2005/Vol. 48, No. 8 COMMUNICATIONS OF THE ACM

Digital Village

